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Abstract. A description is given for the development of the flow J, nside connected rotating half-cylinders. Because 
there are no Ekman layers, spin-up does not occur, and so the time taken for the steady-state behaviour to be 
complete is O(E-I) ;  E is the small Ekman number. However, a number of distinct stages in the process are 
recognized, and the interplay of the forces at each stage displayed. The main results are derived within a linear 
theory, but the adjustments required for a larger Rossby number are also described. 

1. Introduction 

The basic process in the development of flows in a rapidly rotating fluid is spin-up. 
Greenspan and Howard [l] showed in their fundamental paper how the fluid increases its 
angular velocity through vortex stretching in an O(E -1/2) time after an impulsive start, 
rather than the O(E-~) time expected if diffusion dominated; E is the small Ekman number. 
The theoretical prediction has been well verified experimentally (Benton and Clark [2]), and 
the essential role of the Ekman layer is well established - elements of fluid drawn into the 
layer from the interior spiral out, increasing their angular velocity throughout. 

In their paper, Greenspan and Howard essentially concentrated on the simplest model 
where the flow is just between two parallel rotating plates. When an outer cylindrical 
boundary is included in the geometry a number of complications appear, and later work has 
tried to understand the behaviour as a wave front moves inward from the wall, with an 
angular velocity jump across the front; approximate analyses, numerical computations and 
experiments (Warn-Varnas, Fowlis, Fiacsek and Lee [3]) have combined to develop our 
understanding. The role of the Stewartson layer along the wall in this process has been less 
studied however, though recent work (Smith [4]) has described the development of such 
layers in a linear analysis of the split-disc model. 

If there are no Ekman layers present, then it can be conjectured reasonably that the 
longer O(E-1)  time will be required for the fluid to have its angular velocity increased after 
some impulsively induced change in the rotation speed of the boundary. The purpose of the 
present paper is to describe how the changes take place in the fluid. The model investigated 
is that of a split-cylinder; fluid rotates as a solid body inside an infinite circular cylinder when 
one half has its angular velocity increased, though only by an amount which ensures a small 
Rossby number. The steady-state behaviour for a fully linear flow was described some years 
ago by Hocking [5]. He showed how an almost inviscid geostrophic flow exists in the interior 
(the ratio of the radial to axial velocities is O(E)),  which is separated from the wall by a 
Stewartson layer. This work was continued by van Heijst [6], who gave a detailed analysis of 
the different shear layers along the wall of the cylinder when it has finite length. He showed 
that the matching of the interior flow to the sidewall is carried out partially by the ~-layer, 
and partially by the ½-layer, with the latter accounting for the jump discontinuity. 
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We confirm that the flow presented by Hocking requires the longer time; however, the 
Stewartson layer itself along the wall is formed by a process which is little changed from that 
described earlier for the split-disc geometry. At  finite distances from the common rim, the 
almost geostrophic flow is effectively established in finite time, as the inviscid layer first 
described in [4] serves to focus all height-dependent change into the developing wall layer. 
The steady-state Stewartson layer is fully developed in the O(E 1/3) time; the axial velocity 
in the interior is unidirectional at this time with the mass flux balance maintained by a 
reverse flow in the layer. The final development of the circulation in the azimuthal plane 
described by Hocking does require the O(E -])  time as the velocities increase throughout 
this process. 

These results are discussed within a linear theory, and we conclude by investigating the 
restrictions of such an approach. It is only when the Rossby number e satisfies e ~ E 1/2 that 
the flow is everywhere linear; however, as long as e ~ 1 t h e  inertial forces can be ignored 
outside the domain within O(e) radial distances, and O(e3E -1) axial distances from the rim 
between the cylinders. The nonlinear domain grows as the Rossby number increases. 

2. The linear solution 

We consider an infinite circular cylinder of radius a, filled with fluid of voscosity v and 
density P0, which rotates with angular velocity 12. The cylinder has two sections. Without loss 
of generality, we investigate the symmetric situation where, at time t = 0, the upper half is 
given an impulsive increase in angular velocity to 1)(1 + e), while the lower half is given an 
impulsive decrease to ~(1 - e); the constant e represents the Rossby number for the motion, 
and we commence by taking e to be sufficiently small so that all nonlinear terms can be 
neglected. We introduce a set of non-dimensional cylindrical co-ordinates (r, 0, z), where the 
cylinder is represented by r = 1, and the split in the cylinder by z = 0. The radial, azimuthal 
and axial velocities are written as e ~ a u ( r ,  z ,  t ) ,  l ) a { r +  ev ( r ,  z ,  t)} and e l ) a w ( r ,  z ,  t) 

respectively, where a is the length scale and 1-/-1 the time scale. We can then write 

-1 -1 -1 (2 1) u = - r  Oz,  v = r  X ,  w = r  Or, 

to lead to the linear equations 

2Xz = E + - (0, - - Or + 0zz) (2.2) 
Or 2 r Or O z  2 -~t r ' 

1 
- 2 0 z  = E(X,r  r X, + Xzz) - X, , (2.3) 

E = v / I l a  2 is the Ekman number. The no-slip boundary conditions require 

0 = 0 r = 0 ,  x = s g n z  o n r = l ;  (2.4) 

the initial condition is 0 = X = 0 at t = 0, r # 1, and there is the additional requirement that 
0, X are bounded as z---~ ___0o. Because of the symmetry introduced deliberately into the 
model, we can take z/> 0 in all which follows. 
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To solve these equations (2.2), (2.3), we define the Laplace transforms 

~(r, z, s) = ~ e-~'qJ(r, z, t) dt , 

and then take the Fourier transforms 

t~(r, a, s) = f o  cos az~(r ,  z, s) d z ,  

~(r, z, s) = ~ e-S~(r,  z, t) dt , 

x(r ,  a,  s) = f0 = sin az~(r,  z, s) d z .  

These show the ordinary differential equations 

0 2 1 0 2 - s  t~r--~ 2 2aX = E a - -  
Or 2 r Or r r ' 

2 a ~ = E ( ) ~  1 = rx, a~)-sx, 

together with the boundary conditions 
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(2.5) 

3 3 

X = r ~ Anl l (knr ) ,  ~ = r ~ Bnl , (knr) ,  (2.7) 
n = l  n = l  

where I 1 is the modified Bessel function; the constants k n are the three roots with positive 
real part of the sixth-order equation 

(k 2 - a 2 ) { E ( k  2 - a 2) - s} 2 = 4 a  2 ' 

and the arbitrary constants An, B n are connected by 

2orB n = {E(k] - a z ) -  s } A  n . 

The boundary conditions (2.6) yield the three algebraic equations 

3 3 3 

AnI~(kn) = (so~) ~ ~ B n l l ( k n )  = 0 E B n k n l l ( k n )  = 0 
n = l  n = l  n = l  

and these can be solved, using (2.9), in the form 

A B ,  = (TrEso~2) -1{k3Io(k3)11(k2) - k z l o ( k z ) I , ( k 3 ) }  ' 

AB 2 = (,n-Est~ 2) l { k l l o ( k l ) I i ( k 3 )  - k 3 I o ( k 3 ) I 1 ( k 1 ) } ,  

A B  3 = ( ~ r E s a 2 ) - l  { k 2 I o ( k z ) l , ( k l )  - k l l o ( k 1 ) I 1 ( k 2 ) }  , 

with 

(2.8) 

(2.9) 

The solution of (2.5) follows as 

t~= ~r = 0 ,  X = (sa) -1 o n r = l .  (2.6) 
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k , (k~  - k ~ ) I o ( k , ) I i ( k O l , ( k 3 )  
{ E(k~- a 2)- s}{ E(k~ - a 2)- s} 

k3(k  ~ - k21)Io(k3)I , (k l ) I i (k2)  + 
{ E ( k ~  - 0, 2)  - s } {  E ( k ~  - 0, 2 )  - s }  

+ k2(k  ~ - k~)Io(k2)I1(k1)I1(k3)  

{E(k~ - 2 ) _  s}{e(k~- 2 ) _  s} 

(2.10) 

The formal solution for ~O, )~ is now complete, and the inverse transforms give the final 
expressions for ~0, X. Clearly the general formulae for ~0, X require asymptotic or numerical 
evaluation for an interpretation of the physical behaviour, and these are now pursued for the 
different time domains of relevance. 

The initial step is to analyze the algebraic equation (2.8) to determine the roots k n. The 
major technical difference between the approach here and that of the earlier work of Smith 
[4] is that now we must solve for k in terms of a because Fourier transforms in z have been 
taken, whereas previously o~ was required in terms of k after Hankel transforms in r were 
taken. We are concerned with low Ekman number behaviour in rapidly rotating fluids; the 
relation between the two small parameters e, E for which these calculations will be valid is 
considered in Section 3. 

(A) When t = O(1), shear layers form along the cylinder wall, which begin to induce a 
circulation in the interior through the singularity at the rim. Mathematically, the roots for k 
from (2.8) show 

k ~ - - a  1+  k2, k 3=  f o r s = O ( 1 ) ;  (2.11) 

the coefficients corresponding to this parameter domain can be found from (2.10) as 

4Ea  "771/2 f { S ~1/2] 
A , -  ,/7.$4/1(kl) , A 2, A 3 - -  2 1 / 2 E , / 4 s 3 / 4  a exp].-~ E)  [ ,  

plus  B 1 = -½so~-1A 1. The coefficients A 2 and A 3 give the contribution 

l - r )  
X - e r f c  2~-ET)T7~ when t = O(1) ,  (2.12) 

as long as z >> E 1/2, to represent the expected lateral diffusion in the shear layer which is 
developing along the wall. In the overlap region where both 1 - r  and z a re  O(E 1/2) 
diffusion in both the axial and radial directions must be inc luded-  this region is briefly 
investigated in (E). 

Next, the coefficient B, provides the dominant contribution to the stream function when 
t = O(1) away from the wall as 

2Er  I ' ( f l r )  dfl 1 c+i~ e 4) 1/2 cos ds (2.13) 
qJ = T I , ( f l )  ~ i ~  s(s 2 + (s: + 4) 1/2/ ' 

which displays the development of the circulation within the interior; the radial and axial 
velocities are O(E)  in magnitude. For small times t an approximation to (2.13) shows 
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for z, 1 -  r = O(1) ; 

141 

this function qJ satisfies L _ ~  = 0, and represents a ring dipole at z = 0, r = 1. We do not 
write qJ as a sum of higher-order multipoles here,  as can be obtained from (2.13) on taking 
the inverse Laplace transform, but note that for large t a separate approximation shows 

~b = __Err fo  l~(/3r) d/3 for t>> 1 z = O(1) . (2.14) 
• r 1,(/3) 

Already the stream function is independent  of z and so the radial velocity is zero to this 
order  in the interior, while the axial velocity is given by 

Et fo ~ [3Io(/3r ) dB for t>> 1 z O(1) (2.15) W ~ - -  ~ o 

7r 11(/3 ) 

The graph of (2.15) is given in Fig. 1; there is singular behaviour as r----~ 1 - ,  with the limiting 
form w=E Tr - l t ( 1 -  r) -2. The geostrophy with a purely axial flow in the interior is 
established as t increases through O(1)  values at finite distances from the junction; the 
circulation pattern in the interior has decayed. The axial velocity (2.15) is positive for all r, 
and it follows that there must be a negative axial velocity in the developing layer along the 
cylinder wall to preserve the mass flux balance. Similarly, we can form the integral for X 
corresponding to (2.14) using the coefficient A1, and see that the azimuthal velocity o is 
given by 

Ez f~ /3211(/3r ) 
J0 d/3 for t-> 1 z = O ( 1 )  • (2.16) v ~ -  2rr 11(/3 ) ' ' 

the graph of (2.16) is given in Fig. 2. 

A particular computation from (2.13) which can be completed is that on the mid-plane, 
where it is seen that 

2__E_E fo~ /31o ( /3 r______~) 
w(r,O, t) : rr J 0  1,(/3) d/3 °W(t) for t =  O(1) 

2 0  

L .~ r 
1 

Fig. 1. The axial velocity in the interior; w = ETr-lt~'(r) from (2.15). 
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II- r 

Fig. 2. The azimuthal velocity in the interior; v = -  ½ETr-lz~(r) from (2.16). 

where 

l If o' ] t Jo(u) du  - Jl(2t)  ; (2.17) 

the graph of °W(t) is given in Fig. 3, which shows how the oscillation about the mean flow 
decays as t increases. 

For large t, it can be observed from the integral (2.13) that qJ can be written as qs = 
Etf(r ,  z t  -~) for some function f,  and so the circulation with O ( E t )  velocities is still present 
far from the junction in the domain where z t  -1 = O(1).  

(B) We now see that the singular behaviour for w and v as r - - ~ l -  in the core is a 
consequence of the development  of the inviscid layer along the wall as t increases. The result 
follows from extending the approximation given in (2.11) for the roots of (2.8) to show 

k l  20f k2 ( s ~  1/2 a ( s ~  1/2 o/ 
S ' \ ~ /  + , k 3 \ ~ /  s ~ l  ( 2 . 1 8 )  

s s 

1 

i i i I L  t 
2 4 6 

Fig. 3. The development of the geostrophic axial velocity in time; ~V(t) is defined in (2.17). 
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from which we find 

4Ea 1/2 { 2_if} 21/2E 1/4 
B 1 -  1/2 7/~ exp - , B2 = 1/2 5/'''''"~- 

77" S ~ S O~ 

e x p { _ (  s ] , /2 ol -s}' 
B 3 -  1/2 5/4 exp - \ ~ /  + s ' plus A 1 = - -  B 1 . 

S Ot S 

The contibution from the root k~ shows that 

{ / -- 7r( i--  r) 1 A J '  )( ~ 7 r ( i  ~ r )  2 ~ (1  - c o s  A) , (2.19) 

in the domain A = O(1),  where we have written 

A - 2(1 - r)t 

The similarity variable A defines a layer along the wall where there is a time dependent  
geostrophic balance between the inviscid terms 2X~ = - q G t ,  2~Oz = X,, the graphs of the 
velocities given by (2.19) are given in Fig. 4. 

When we take the limit A---~ ~ in (2.19), we see that qJ= E~r-lt(1- r) i, which matches 
with the limit of (2.14) as r---~ 1 - .  This flow in the layer develops as t increases, and 
separates the increasing axial flow in the interior from the viscous shear layer along the 
cylinder wall; it is the shear layer which ensures the no-slip conditions are satisfied on the 
surface of the wall. The limit of (2.19) as A---~0 shows 0 =  2ETr-1t3z-2(1 - r), which 
indicates the slip velocity - ~ E y r - l t 3 z  - 2  along the wall from inviscid theory. The stream 

function in this shear layer follows from the contribution given by the roots k2, k3; 
specifically, 

gt3 [120_(p6 + BOp4 + laOp2 +120) erfc(1 p) ] 
0 ~ _  1807rZ2 

+ 27r-l/2p(p 4 + 28p 2 + 132) e -I/4p2] , 
J 

where p = (1 - r)/(Et) '/2. 
Finally we note that the inviscid geostrophic region has width O(z/t) when A = O(1),  and 

so it overlaps with the shear layer where p = O(1) in the domain where 1 - r = O{(Et)l/2}, 
z = O(E1/2t3/2); here both effects are present. 

(C) Next, we observe that for z = O(1) the two layers where 1 - r = O(E1/2tl/2) and O(z/t) 
coalesce when t = O(E  -1/3) to give a single domain with 1 - r = O(E  I/3) - the Stewartson 

layer. More precisely, at general height z, we have a domain defined by /x = O(1) where 

1 m r  

/ z -  t zz )"~z'~/3 , (2.20) 

which is consolidated when t = O(E- l /3z-1 /3) ;  t h i s  domain is formed through the growth of 
the overlap region described at the end of the previous subsection. 
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-0.1 

ID 
), 

(a) 

-0. 

(b )  

Fig. 4. The veloc i t i es  in the shear layer during the inviscid s tage ;  (a) q,r=(4Et3/rrz2)~(A) and (b )  X = 
(4Et3/rrz2)X(A) f r o m  (2 .19) .  

The form of the algebraic equation (2.8) required for the description of the behaviour 
within this region where/x = O(1) is approximately 

3 K - qK --+ 2a  = 0 ,  (2.21) 

where k - -  E-I /3 K ,  S = E1/3q and K, q, a = O(1); only the three roots r i with positive real 
part from (2.21) are included. Completing the details shows 

K1 = (~  + ~) , ,3  _ (~  _ ~ ) , , 3 ,  K2 = - , o ( v  + ~)1,3 + to2(v _ ~ )1 ,3 ,  
(2.22) 

K3 = _ _ t o 2 ( , ~  + O~)1/3 + tO( ') /  - -  O~) 1/3 fo r  "y = (O/2 - -  q 3 / 2 7 )  1/2 " h e r e  tO = e 2~ri/3 
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Hence 

I / , --  2rr2iEl/3 ff+i~° eqrdq f )  C°SCeZ [ - i =  --q eeKZ 1 K l e  - ~ ' ~ ' +  ~iK2 e - K 2 ' ~ -  iK3 - } ~  e K3~ d a .  

for 1 - r = E1/3o ", t = E-1/3z, with a similar expression for X- As r - + 0 ,  the result (2.19) 
follows. As z--+oo, a steady state is reached within the layer; the roots r i for q--+0 show 
K 1 = (2001/3, K 2 ~--- e- i=/3Kl,  K 3 ~--- eiCr/3K1 a n d  so 

= (Ez)l/3qb(t ~) - 21/3n" ~ e -(2u)~% - e -1t2(2u)',3~* cos  ~ (2U)1/3/Z 

1 e_l/2(2u)l/3t. W~ } + ~ sin ~ (2u)1/3/, d u ,  

1 ~o s inu  { V~ = -- - -  e -(zu)1% + e -1/2(2u)1/3/z COS T (2U)1/3~ 
X rr u 

1 e_l/2(2u)l/3t. V~ } + ~ sin y (2u)1/3/. du 

for r--+ oo; the graphs of these functions are given in Fig. 5. The Stewartson l- layer is formed 
in the limit as r--+ oo; although Hocking [5] did not write down these expressions, they can be 
gained directly from his results after taking asymptotic approximations. In particular, 
~b'( /2)--+l/V~ as ~--+oo, which shows the axial velocity -ella~V--3 at the edge of the 
boundary layer. 

The Stewartson layer is fully formed when t = O ( E  -1/3) for z = O(1);  however,  for large z 
it requires the extended time t = O(E-1/az2/3) for the steady state to be achieved. 

(D) Within the interior the axial velocity given by (2.15), developed during finite time, is 
valid for all t ~  E -1 when z = O(1),  and the reversed flow is still within the wall layer. This 

1 

~ I _ It I~ 
0 2 4 

Fig. 5. The velocities in the steady state Stewartson layer; w ~ - ~ b ' ( / , )  and v--~ X(I*) from (2.23). 
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layer has w i d t h  O(E  1/3) when t = O(E-W3),  but for E -1/3 "~ t ~  E -~ diffusion still acts as the 
layer with width O ( E l / 2 t  1/2) continues to widen. The final steady state in the interior 

described by Hocking does require the O(E  -~) time before it is fully developed. 
To describe the behaviour here we write (2.8) as 

k 3 - p k  --- 2/3 = 0 ,  (2.23) 

with s = E p ,  a = E/3, for k, p , /3  = O(1);  the equation (2.23) is equivalent to (2.21), and so 
the roots k i (i = 1, 2, 3) can be written down directly from (2.22). The representation for the 

stream function is 

2r fc c+i~ e pet 
~9 • ,n.3 i - i ~  p 

foCOS/3Ez  - -  dp  -~/3 [ { k 3 I o ( k 3 ) l l ( k 2 )  - k z l o ( k z ) l l ( k 3 ) ) I ~ ( k ~ r )  

+ { k , I o ( k , ) I i ( k 3 )  - k 3 I o ( k 3 ) I I ( k ~ ) } I , ( k 2 r )  

+ { k 2 I o ( k 2 ) I i ( k ~ )  - k , I o ( k l ) I , ( k 2 ) } I 3 ( k 3 r ) ]  d / 3 ,  

where 

= (k~ - k ~ ) I o ( k , ) I i ( k 2 ) l l ( k 3 )  + (k2~ - k 2 3 ) l o ( k 2 ) I , ( k 2 ) I 1 ( k 3 )  

+ (k~ - k ~ ) I o ( k 3 ) I i ( k z ) I i ( k l ) ,  

with a corresponding form for X- 
Besides taking the limit E t - - - ~  to regain Hocking's solution, the only worthwhile 

approximation which can be gained from this expression is in the domain where p, ~" = O(1) ,  
with 

1 F r  z 

EX/Zt 3/2 ( ~ t )  

Here  we can write 

- -  - -  du c o s  o~" ~1 e-61p -[- ~2 e-~2P - 63 e -~30 do 
6 - -  27r2i -i~ u 6~v ~ V ~  ' 

where 6 i are the roots with positive real part of 63 _ 6 + 2v = 0, numbered as was done with 
(2.21). When z = O(1) ,  and so ~" = 0, for the limit p--*0 we see that ~0 = - 3  - 1 / 2  t o  match 
with the axial velocity at the edge of the steady ~-layer, and when p - - - ~ ,  qJp = 7r-lp -2 to 
match with the axial velocity at the edge of the interior region as given in (2.15). 
Consequently,  the value of r at which the axial velocity is zero (for finite z) moves into the 
body of fluid within this diffusion layer where 1 - r = O(E1/Zt1/2). Eventually, as t becomes 

O ( E - I ) ,  the position where flow reversal takes place moves into the interior region, finally 
settling at r = 0.6 according to Hockings computations. 

(E) So far we have ignored the innermost region where both 1 - r and z are O ( E l / Z ) .  To 
fully describe the flow here requires taking both a and k to be O(E  1/2), with s = O(1) ,  in 
the equation (2.8); consequently, no simplification is possible in the expression for the roots, 
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nor worthwhile expressions for the velocities. The only general result is that all the transient 
behaviour does take place during finite time t. However ,  if we write 1 - r =  E~/2~, 
z = E~/2~Y, and proceed to take ~ and ~ themselves to be small, some understanding of the 

flow close to the singularity at r = 1, z = 0 is gained. 
Here  the left hand side of (2.3) is negligible to give the simplified equation X ~  + X ~  = 

X,, with X = sgn 0~ on ~f = 0; including the initial condition then leads to 

X=~r---~2 f :  sinl3/3°Y e_¢~2+~),20y d/3 , ~ ,  ~J ~ 1.  (2.24) 

(This can of course be obtained from the general solution, but the complications involved 
are unnecessary.) Now (2.24) described the strictly two-dimensional flow due to the two 
halves of a split-plane moving in opposite directions with diffusion alone acting; as t--~ ~, 
X =2w/ I t ,  where ~f = ~ cos w, ~ = ~ sin w, as given by van Heijst [6]. 

The stream function now follows from (2.2), which can be solved to give 

2E1/2 s) 1/2 e -(~2+s)l/2a~ } e ~t32+s)l,2~}] 
= ~'s3(/3 2 + s) 1/2 [{(/32 + +/3}{e - ~  - - s ~  

for /3  = EW2ot in the Fourier transform. The velocity is finite for all ~ ,  0y = O(1),  with the 
dominant contribution being in the axial direction as t---~o% with magnitude 
(2"n)-IE1/2~ 2 In ~ cos20 for ~ ~ 1. The other  result to note is that the stress on the wall of 

the cylinder near the singularity is 

f o  ){ 1 _2 -~/2 -1 } d y ,  27r-lPoUEl/2t 1/2 c o s ( y ~ t  -1/2 erfc 7 + ~ 7 erf 7 -  ~- 3' e-V2 

(P0 is the density) which is bounded at all times, and gives 4~-  3/2poPEl/2tl/2 as  °~t-l/2-----> 0.  

We complete this section with two final observations. Firstly, the infinite geometry in the 
axial direction permits a scaling of the variables to eliminate the Ekman number  E from the 
dominant terms of the basic equations (2.2), (2.3) and consequently, because the boundary 
conditions are independent of E,  from the linear problem as a whole; Hocking [5] noted this 
for the steady state case. We write 

r = R ,  z = E - 1 Z ,  t = E - 1 T ,  

for 

2Xz= OR 2 .~ 0-R 0-T qJRR--~$R , 
1 

-2~Oz = XRR -- ~ XR -- Xr • 

Because there is no Ekman layer the 02/OZ 2 t e r m s  in (2.2), (2.3) play no role in the 
development of the motion. 

Also, if the geometric model is changed slightly to the collar [z[ < c (for some constant c) 
of the cylinder having its angular velocity increased from fI to f~(1 + e) time t = 0, it can be 
seen that the functions ~Oc(r, z, t) for the motion will be given by 

qJc(r, z ,  t) = Oo(r, z + c, t) - t~o(r, z - c, t ) ,  

x,.(r, z ,  t )  = x o ( r ,  z ,  + c,  t )  - x o ( r ,  z - c ,  t ) ,  
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where ~0 and )to are the corresponding functions already found for the single split at z = 0 for 
all the separate time domains. The function qJc is now an odd function of z, as ~O 0 is even; the 
reverse is true for X- Therefore ,  there will be no interior flow to leading order  once t >> 1, and 
from then on it is only in the wall layer that the effect of the differential rotation is noticed. 

3. The nonlinear correction 

So far the nonlinear terms have been completely ignored on the basis that the Rossby 
number  e is sufficiently small. However ,  because there is a discontinuity in the azimuthal 
velocity on the boundary r = 1 at z = 0, it is necessary to consider the existence of a region in 
the neighbourhood of the junction of the cylinders where the velocity gradients are large 
enough that inertial terms must be included in the basic balance of forces. 

When f~aU, lIaV, l I a W  are the radial, azimuthal and axial velocities respectively in the 
fluid, pofl2a2p is the pressure, then the complete Navier-Stokes  equations are 

U~ + r - I U  + W = 0 ,  (3.1) 

U, -t- U U  r + W U  z - r - i V  2 -~ - - e r  + E ( U r r  q- r - l U r  --  r - 2 U  + U z z ) ,  (3.2) 

V t + UVr + r - I U V  + WV~ = E(V~ + r - l E t  - r-ZV + V~z ) , (3.3) 

Wt + UWr + WWz = - P z  + E(Wrr + r - l W ,  + Wzz) ; (3.4) 

the approximation in Section 2 was to write U = eu, V = r + ev, W =  ew, P = lr2 + ep, and 
then neglect all quadratic terms in e. 

To begin, we observe that the inertial terms are required in the innermost domain where 
1 -  r ,  z = O(E  1/2) once the Rossby number  is large enough that e = O(E1/2). This is the 

minimum value of e for which the linear theory breaks down, and the full equations need to 
be considered here for all times t, though for no times outside this domain. We proceed to 
take e-> E 1/z in all which follows. 

We now consider the formation of the geostrophic layer in which A = 2(1 - r) t /z  = O(1).  
From (2.19) it is clear that the azimuthal velocity shows V r = 1 + O{eEt(1  - r)-3}, and so 
the nonlinear terms are necessary when 

1 - r = O(e1/aE1/3tl/3), z = O ( e 1 / 3 E 1 / 3 t 4 / 3 ) .  (3.5) 

Here  V and W are O(el/3Ea/atl/3), and the basic momentum balance requires the inertial 
forces in the azimuthal and axial directions (i.e. equations (3.3) and (3.4)); the viscous terms 
are still negligible. It is the focusing of the action into the narrow region defined by the 
similarity variable h which increases the velocities, and so leads to the nonlinearity, which 
begins to develop as t increases through finite values, Although the velocities will be given in 
terms of h (by (2.19)) at the outer  edge of the domain (3.5), within it such a simple 
representation is no longer possible. This domain is larger than the overlap region between 
the geostrophic and diffusion layers (where 1 - r = O(E1/2tl/2), z = O(Ea/2t3/2)) only as long 

as t ~ e2E-1, and so a separate analysis is necessary when this time constraint is no longer 
satisfied. 
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For t = O(e2E-~), both regions have the common width O(e) and height O(e3E-1),  and 
we write 

1 -  r =  e7 l ,  z = e3E- l~  , 

with the velocities given by 

U = E e - I F ,  V =  r + e G ,  

to give the equations 

t = e2E-lO (3.6) 

1 1" 2 W =  e l l ,  P = -~ + e2S , 

- F ~ + H ~ = 0 ,  2 G = - S n ,  

G o - F G ,  + HG~ = G , , ,  H o - FHo + HH~ = - P t  + H , ,  ; 
(3.7) 

the viscous forces are now included along with the inertial forces. It is noted that the 
similarity variable/z for the Stewartson l- layer satisfies/z = O(1) in this domain r/, ~: = O(1). 
As long as e is small, the extent of the nonlinearity is therefore restricted to this domain, and 
it is as 0---~ o0 that the steady state is fully developed here. Outside r/, ~ = O(1) the motion is 
correctly given by the linear behaviour described in Section 2 for all times. 

Now the steady state state form of the equations (3.7) are equivalent to those discussed by 
Stewartson [7], when he was considering the formation of boundary layers induced by the 
axial pressure gradient along the surface of a rotating circular cylinder; in Stewartson's work 
the Rossby number is finite, and the one change from (3.7) is that the centrifugal term is also 
nonlinear in the angular momentum equation. His discussion can be adapted directly to the 
present situation; here we can define a similarity variable ~b = r1~:-2/5 for a wall layer where 
the no-slip conditions need be satisfied, and then develop a series solution (with, for 
example, G = E~= 0 sc2n/SG,(~b)) leading to a set of ordinary differential equations for Gn, 

etc., which can be solved iteratively. However, when the numerical solution of the 
differential equations for the leading-order terms are investigated it is found that one exists 
only for ~ < 0. The symmetry about z = 0, present throughout the linear solution, is lost 
within this nonlinear region. The nature of the behaviour here is somewhat complex even for 
the steady-state situation, and we just sketch the details. When z < 0 there is, in fact, a 
double structure: the inner viscous region where ~b = O(1) has the viscous terms present to 
leading order, but the Coriolis term absent, and the outer inertial region where the Coriolis 
term is present to leading order, but the viscous terms are absent. The situation is roughly 
similar to, but necessarily more detailed than, the flow near the trailing edge of a flat plate 
(c.f. Goldstein [8]). 

The development of the inner region in time is through diffusion as the axial velocity 
induced by the differential rotation grows, with 1 - r = O(E1/2tl /2);  it extends down the wall 
as [z[ = O(el/ZEl/4ts/4).  Because el/ZEl/4t 5/4 >~ el/3E1/3t4/3 for t ~  e2E -1 (n.b. (3.5)), it 

follows that this growth of nonlinearity along the wall is a distinct process from that 
described earlier, which is an inviscid process. However, both processes coincide once 
t = O(e2E -1) as the final nonlinear domain (3.6) is consolidated. 

The author wishes to thank the Natural Sciences and Engineering Research Council of 
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